HDR Ergänzung

Ergänzend zu meinem Beitrag HDR high dynamic range möchte ich über weitere Erfahrungen dazu mit meinen Kameras berichten, insbesondere zur Panasonic Lumix TZ 91

Zunächst noch zur Technik und zu deren Dokumentation.
Bei der HDR-Einstellung werden wie beschrieben 3 Bilder hinter einander aufgenommen und kameraintern zu einem Bild zusammmengesetzt.

Im Ergebnis etlicher Hochgebirgsaufnahmen mit extrem kurzen Belichtungszeiten kam es trotzdem selbst bei wenig beweglichen Motiven zu “Schattenbildungen”, d. h. Personen werden doppelt bzw. mehrfach abgebildet.
Das kann ich mir nur so erklären, daß die Zeitabstände zwischen den Aufnahmen zu groß sind. Bei Belichtungszeiten von 1/2500 bspw. ist das nicht so richtig nachvollziehbar.

Leider gibt es in den Metadaten der Bilder bei Verwendung
der HDR-Funktion nur den Hinweis exposure mode auto bracket.
Angaben zu den Zeitabständen zwischen den Aufnahmen fehlen.

Unter vergleichbaren Bedingungen sind die HDR-Ergebnisse der
Olympus SH2 wesentlich unproblematischer als
die der Panasonic Lumix TZ 91.

Zwei Beispiele mit der Panasonic Lumix TZ 91.
Jeweils mit 1/2500 Belichtungszeit aufgenommen.

 

Es ist deutlich zu erkennen, daß die Einzelbilder an sich scharf sind, aber dadurch, daß die Einzelbilder in großen zeitlichen Abständen aufgenommen worden sind, die Einzelbilder getrennt dargestellt werden.

Ich verwende deshalb bei der Kamera Panasonic Lumix TZ 91 die HDR-Funktion nicht mehr.

Vergleich Smartphone OPPO RENO 2 Z – Kompaktkamera Panasonic TZ91

Im Zuge der Modernisierung meiner Handys habe ich ein Smartphone Typ OPPO RENO 2 Z gekauft. Dem Trend entsprechend enthält dieses Smartphone fortschrittliche Fotografietechnik.
Für mich als Hobbyfotograf war/ist es interessant, das Vermögen des Smartphones hinsichtlich Fotografie mit meinen Kompaktkameras zu vergleichen.

Das Smartphone OPPO RENO 2 Z hat verschiedene Objektive. Wann welches Objektiv zum Einsatz kommt, entscheidet im wesentlichen das Gerät selbst.

Das Hauptobjektiv hat eine Brennweite von 4.73 mm und eine Blende 1.7, jeweils fest, also kein optisches Zoom, kein Abblenden…

Die Brennweite entspricht etwa Weitwinkel 25 mm Kleinbildformat.

Meine Kompaktkameras/Superzoomkameras und die Hauptkamera dieses Smartphones haben etwa einen gleich großen Chip, so daß der Vergleich übersichtlich wird.

Das Bildformat kann gewählt werden:

– Standard 4 : 3, 3 : 4, Auflösung 4000 X 3000, 3000 X 4000 px
– Vollbild Auflösung 4000 X 1840, 1840 X 4000 px
– hochauflösend 4 : 3, 3 : 4, Auflösung 8000 X 6000, 6000 X 8000  px


Die Hauptkamera des Smartphones kann also 48 Megapixel auflösen.
Das ist sehr viel, aber es bezieht sich auf die Weitwinkeleinstellung.


Das Smartphone läßt vor der Aufnahme digitales Zoomen zu, allerdings bei der Einstellung hochauflösend nicht, d. h. die optische Auflösung entsprechend 48 Mpx ist die Grenze.

Bevor ich zu einigen Bildvergleichen komme noch eine Abschätzung zu den rechnerisch erreichbaren Auflösungen:

    • Weitwinkel entsprechend 25 mm KB        48 Mpx
    • Normal entsprechend 50 mm KB                12 Mpx
    • Tele entsprechend 100 mm KB                       3 Mpx

Das Smartphone zeichnet zwar auch bei Tele entsprechend 50 mm KB (2x) , 125 mm KB (5x) und 250 mm KB (10x) mit 12 Mpx auf, aber eben digital.

Zum Vergleich die Panasonic TZ 91 bietet durchgängig von 24 bis 720 mm KB etwa 20 Mpx, und das optisch.

Nun zu Bildvergleichen:

Links werden die Aufnahmen mit dem Smartphone angeordnet, rechts die mit der Superzoomkamera. Es werden verschiedene Bilder in unterschiedlichen Gegenstandsweiten mit dem Smartphone aufgenommen, dann wird bei gleichen Gegenstandsweiten mit der Kamera die gleiche Bildgröße durch optisches Zoomen dargestellt.
Wegen der begrenzten Darstellbarkeit auf WordPress wird wieder mit Ausschnitten gearbeitet.

“Versuchsaufbau”

……………………..

Zur Beurteilung wird das Testbild jeweils ausgeschnitten und beurteilt.

Gegenstandsweite 1 m

Smartphone, 4000×3000, digitales Zoom 1 fach
TZ91, Brennweite 24 mm KB

………………………………

Smartphone, 4000×3000, digitales Zoom 2 fach
TZ91, Brennweite 50 mm KB

………………………………

Smartphone, 4000×3000, digitales Zoom 5 fach
TZ91, Brennweite 125 mm KB

…………………………………

Gegenstandsweite 2 m

Smartphone, 4000×3000, digitales Zoom 1 fach
TZ91, Brennweite 25mm KB

………………………………………….

Smartphone, 4000×3000, digitales Zoom 2 fach
TZ91, Brennweite 50mm KB

…………………………………………………

Smartphone, 4000×3000, digitales Zoom 5 fach
TZ91, Brennweite 125mm KB

……………………………………….

Gegenstandsweite 4 m

Smartphone, 4000×3000, digitales Zoom 1 fach
TZ91, Brennweite 25mm KB

………………………………………

Smartphone, 4000×3000, digitales Zoom 2 fach
TZ91, Brennweite 50mm KB

………………………………………

Smartphone, 4000×3000, digitales Zoom 5 fach
TZ91, Brennweite 124mm KB

……………………………

Smartphone, 4000×3000, digitales Zoom 10 fach
TZ91, Brennweite 250mm KB

…………………………….

Smartphone 48MPX, Brennweite etwa 25 mm KB
TZ91, Brennweite 250mm KB

…………………………

Gegenstandsweite 10 m

Smartphone, Ausschnitt aus 8000×6000
TZ91, Brennweite 720 mm KB

…………………………….

Hier noch einmal das Original vom Smartphone, 8000×6000 Pixel, Gegenstandsweite 10 m:

Smartphone, Original/Komprimierung auf 2 MB, Gegenstandsweite 10 m

Das Original hat bei normalem Betrachtungsabstand eine hervorragende Bildqualität. Beim Vergleich der Ausschnitte sieht man allerdings die Unterschiede, da kann das Smartphone mit seiner Festbrennweite von 25 mm KB mit den Telebrennweiten der TZ91 selbstverständlich nicht mithalten.


Das Smartphone OPPO RENO 2 Z macht im Weitwinkelbereich 25 mm entsprechend Kleinbild sehr gute Bilder.

Der Vergleich zeigt allerdings auch, daß optischer Zoom hier im Beispiel der Panasonic TZ91 durch digitalen Zoom des Smartphones nicht ausgeglichen werden kann.


 

Weitere Ergänzung zu raw- oder jpg-Format

Da das Format zum Abspeichern der Bilder wesentlich für die Qualität der Bilder ist, möchte ich nach längerer Praxis erneut darauf eingehen.


Ich hatte mich grundsätzlich dafür entschieden, das jpg-Format zu verwenden und dieses über Lightroom in das dng-Containerformat einzubetten, d. h. in der Regel das raw-Format nicht zu verwenden.


Diese meine Entscheidung möchte ich wieder einmal überprüfen.

Dazu habe ich ein Bild mit der Kamera Panasonic TZ 91 in höchster Auflösung aufgenommen, abgespeichert in der Kamera im jpg-Format höchste Qualität und im raw-Format.

Das Bild wurde mit meinen verschiedenen Möglichkeiten entwickelt:

– jpg der Kamera in höchster Qualität, Lightroom, eingebettet in dng
– raw der Kamera, über Adobe dng-Converter, gewandelt in dng
– raw der Kamera über Silkypix Developer Studio 8 SE
…..– in tif, 8 bit
…..– in tif, 16 bit
…..– in jpg höchste Qualität
……..jeweils danach über Lightroom in dng

Auf Grund der begrenzten Darstellungsmöglichkeit hier in WordPress werden wieder Ausschnitte verwendet. Die Ausschnitte wurden aus den 200%-Ansichten (4k-Monitor, vgl. meinen Beitrag zu 100%-Ansichten) ausgeschnitten.

Ausgangsbild, Rahmen kennzeichnet die folgenden Ausschnitte
rawdngconverter
lightroom-jpgdng, gekennzeichnet durch eine typische jpg-Strukturierung
silkypix-rawtif8bitdng
silkypix-rawtif16bitdng
silkypix-rawjpgdng, das Ergebnis ist besser als jpg aus der Kamera, das jpg-Typische verschwindet weitgehend.

………………………………………………………………………………………
Für die Kamera Panasonic TZ91 führen die hier aufgeführten raw-Konvertierungen zu vergleichbaren Ergebnissen. Das jpg-Format aus der Kamera schneidet etwas schwächer ab, reicht aber in der Regel aus.
Der Adobe dng-Converter führt zu einer recht regelmäßigen Strukturierung,
erfordert aber hinsichtlich Glättung dieser Strukturen etwas zusätzlichen Aufwand.
Bilder ggfs. anklicken, Grafik anzeigen, nach Wunsch zoomen.


Grundsätzlich bleibe ich bei meiner Entscheidung, das jpg aus der Kamera in höchster Qualität zu verwenden


 

HDR High Dynamic Range

Es geht hier nicht um die eigentliche HDR-Technik, darüber wird an anderen Stellen, z. B. unter wikipedia, geschrieben.

Hier geht es um Folgendes:

Bilder von Motiven, bei denen sehr dunkle und sehr helle Bereiche vorhanden sind, bedürfen einer Nachbearbeitung, damit auf üblichen Darstellungsmedien wie Ausdrucke, Beamer, aber auch normale Monitore insbesondere mit Raumlicht beide Bereiche gut zu erkennen sind.
Dunkle Bereiche müssen aufgehellt werden, helle Bereiche müssen abgedunkelt werden.
Damit stoßen die Programme zur Nachbearbeitung an ihre Grenzen.
Aber auch die Kameras stoßen an ihre Grenzen, den abbildbaren Lichtwertbereich betreffend.
Beim Aufhellen der dunklen Bereiche ist außerdem zu berücksichtigen, daß verstärktes Bildrauschen auftreten kann.

Um diese Grenzen zu erweitern und die Abbildung zu verbessern , wird unter dem Begriff HDR folgendes gemacht:


Es werden verschieden belichtete Bilder  zu einem Ergebnisbild zusammengesetzt. Dabei werden aus überbelichteten Bildern vornehmlich die dunklen Bereiche, die dadurch aufgehellt sind, und aus unterbelichteten Bildern die hellen Bereiche, die dadurch abgedunkelt sind, zum Ergebnisbild zusammengesetzt. Das Ergebnisbild wird dabei hinsichtlich seiner Dynamik so begrenzt, daß die Darstellung auf den o. g.  Darstellungsmedien verbessert wird.


Bezogen auf das Programm Adobe Lightroom kann man das etwa so verstehen, daß die Möglichkeiten der Tonwertsteller für Belichtung, Kontrast, Lichter,  Tiefen usw. in den Grundeinstellungen des Entwicklungsmoduls zur Verbesserung der zu dunklen und zu hellen Bildbereiche nicht ausreichen und deshalb mittels dieser HDR-Technik nachgebessert werden kann.

Meine Kompaktkameras haben zum Teil HDR-Funktion, es werden jeweils 3 Bilder zusammengesetzt und ein Ergebnisbild ausgegeben. Die Ergebnisbilder werden im jpg-Format ausgegeben. Die Erweiterung um Lichtwerte ist z. T. einstellbar und reicht bis +- 3 LW. Was dann gemacht wird, entscheidet die Kamera, man hat selbst nur wenig oder keine Einflußmöglichkeiten.
Die Sony RX100 gibt bei Wahl HDR 2 Bilder aus, eines mit HDR, eines ohne. Das finde ich nützlich, sieht man doch sofort die Unterschiede.

Mehr Möglichkeiten hat man, wenn man Belichtungsreihen aufnimmt, und die Bilder mit einem entsprechenden Programm zusammensetzt.
Ich habe das Programm tufusepro gekauft, verwende es aber selten, weil der Aufwand mit Belichtungsreihen hoch ist.

Das Programm verarbeitet als Eingangsdateien sowohl tif (für raw), als auch jpg, die Ergebnisdatei wird im tif-Format ausgegeben.
Es gibt eine Anzahl von Optionen, mit denen in der Struktur Feinheiten verändert werden können (Schatten usw.).

Dadurch, daß mehrere Bilder nacheinander aufgenommen werden, verlängert sich die Gesamtbelichtungszeit, d. h. die einzelnen Belichtungszeiten müssen entsprechend kurz sein oder man muß mit Stativ arbeiten. Für bewegte Motive ist diese Technik kaum geeignet.

Typische Einsatzfälle sind Motive wie bspw. Innenaufnahmen mit Blick aus Fenstern ins Helle, auch umgekehrt Außenaufnahmen mit Blick in dunklere Innenräume, Außenaufnahmen mit Sonne und Schatten, insbesondere Hochgebirgsaufnahmen mit Schnee in der Sonne und im Schatten liegende Felsflächen.

Dazu eine Hochgebirgsaufnahme, die ich leichtsinnigerweise mit der
Olympus SH2/Scene/HDR ohne vorherige Erprobung gemacht habe.

mit Olympus SH2, kamerainternerHDR aufgenommen

Das Bild zeichnet noch zu sehr schwarz weiß.

zur Veranschaulichung dieser HDR-Wirkung wurde das Bild mit tufusepro/Option als “Pseudo-HDR” überarbeitet

Unter Pseudo-HDR ist zu verstehen, von dem Bild werden unter- und überbelichtete Abzüge gemacht und dann mit dem Original kombiniert.

Im Ergebnis ist zu sehen, daß die Struktur des Ergebnisbildes verbessert ist.

Hier noch ein nicht ganz zeitgemäßes Motiv, bei dem aber der HDR-Einfluß gut zu sehen ist.

Sony RX100, normal
Sony RX100, HDR, +- 3 LW

Ich glaube, auch an diesem Beispiel ist der HDR-Effekt gut zu erkennen.

Praktische Erfahrungen zum Adobe-dng-Format

Da der Beitrag meiner Webseite “In welchem Dateiformat nehme ich meine Bilder auf und wie speichere ich sie ab” relativ oft aufgerufen wird, möchte ich hier noch einmal meine praktischen Erfahrungen mit dem Adobe-dng-Format zusammenfassen. Wohlgemerkt, das sind praktische Erfahrungen.

1. Das Adobe-dng-Format ist ein non destructives Format, d. h. die Bildbearbeitung geht immer von dem Ausgangsbild aus, das angezeigte Bild wird mit den Einstellungen, die im Bildbearbeitungsprogramm Adobe Lightroom gewählt worden sind, bei Anzeige entwickelt. Die Anzeige des entwickelten Bildes dauert deshalb etwas, insbesondere wesentlich länger als der Aufruf eines Bildes in destructivem Format wie bspw. tif oder jpg, denn diese Bilder in diesen Formaten sind nach der Bildbearbeitung und Abspeicherung fertig.
Allerdings haben diese destructiven Formate den Nachteil, daß nach dem Abspeichern des bearbeiteten Bildes der Ausgangszustand verloren geht.
Um den Bildaufruf für dng zu verkürzen, sieht das Adobe-dng-Format vor, Vorschaubilder in voller Größe einbetten zu können. Diese Vorschaubilder in voller Größe repräsentieren den letzten Bearbeitungsstand und entsprechen jpg-Bildern in hoher Qualität.

2. Das Adobe-dng-Format ist gewissermaßen ein tif-Format, d. h. jedem Pixel wird der entsprechende Wert zugeordnet.
Im Unterschied zum tif-Format, bei dem die Auflösung gewählt werden kann, 8, 8, 8 bit oder 16, 16, 16 bit, und dann fest ist, ist die Auflösung der Werte zu den Pixeln  beim dng-Format nicht fest sondern gleitend, d. h. während das tif-Format bspw. bei Einstellung 16, 16, 16 bit den Inhalt jedes Pixels mit 16, 16, 16 bit aufzeichnet und damit zu sehr großen Dateien führt, zeichnet das dng-Format nur das auf, was vom eingegebenen Format verlangt wird. Wenn das eingegebene Bild nur 8, 8, 8 bit auflöst, wird nur in 8, 8, 8 bit aufgezeichnet, also gewissermaßen ein tif mit 8, 8, 8 bit Auflösung, die Dateigröße ist entsprechend wesentlich kleiner.

3. Adobe-dng ist nicht nur ein Format zur Vereinheitlichung von verschiedenen raw-Formaten, sondern auch ein Format, das verschiedene andere Formate aufnehmen kann. So kann z. B. das jpg-Format aufgenommen werden.


Dadurch wird das jpg-Format, das an sich destructiv ist, non destructiv.


Die Werte der Pixel vom jpg-Format werden vom dng-Format exakt als Ausgangszustand übernommen. Änderungen, die im non destructiven dng-Format vorgenommen werden, beziehen sich auf diesen Ausgangszustand des jpg-Formates.
Es können auch noch andere Formate wie bspw. png oder pse und natürlich tif in den verschiedenen Auflösungen in dng übernommen werden.

4. Adobe Lightroom Version 5.7 löst im Entwicklungsmodul mit 10, 10, 10 bit auf. Je nach dem ob das dng-file aus einem raw-Format oder einem anderen Format gebildet wurde, sehen die Grundeinstellungen im Entwicklungstool im Bereich Weißabgleich etwas verschieden aus, und es betrifft die Auflösung.
Während bei raw die Farbtemperatur in Grad von 2000 bis 50000, also absolut, aufgelöst wird, wird diese bei jpg und ähnlichen Nicht-raw-dng-Dateien mit +-100 relativ aufgelöst. Bei der Tönung ist der Unterschied noch geringer, bei raw +- 150, bei jpg… +- 100.

Im praktischen Arbeiten konnte ich keine störenden Unterschiede feststellen.

5. Mein Arbeitsablauf mit jpg sieht damit einheitlich in Stichpunkten so aus:

– Bilder im jpg-Format nach Lightroom importieren
– exportieren im dng-Format, gleicher Ordner, dabei voreingestellt
“Vorschau in voller Größe”
– weitere Bearbeitung in Lightroom

 

Kommentarfunktion

Liebe Nutzer dieser Webseite, bitte habt Verständnis dafür, daß ich eigentlich nur Kommentare zur Sache freigeben will.

Ich möchte vermeiden, daß ich für andere Webseiten, z. B. Werbung für Immobilienkäufe… Plattform zur Verbreitung werde.

Also ich bin sehr dankbar, wenn meine Beiträge sachlich kommentiert werden, und verspreche dann auch rasch und sachlich zu antworten.

Das heißt, wenn ich mir nicht sicher bin, entferne ich die Links aus euren Kommentaren.

Leider mußte ich Spam filtern, schade, aber…

Ich schaue mir die als Spam gefilterten Kommentare an sich an.
Möglicherweise wird aber auch mal ein sachlicher Kommentar als Spam markiert. Wer meint, davon betroffen zu sein, möchte sich bitte in geeigneter Weise bemerkbar machen.

Leider gibt es außer Spam kaum Kommentare. Die als Spam gefilterten Kommentare enthalten immer ähnliches Muster, kein sachlicher Inhalt, nur Lobhuddelei, sprich honeypot. Inzwischen werden solche “Kommentare” ungelesen gelöscht.

Habe die Kommentarfunktion gesperrt, um Spam zu vermeiden.
Wer Fragen hat, bitte in geeigneter Weise bemerkbar machen.

Habe die Kommentarfunktion versuchsweise wieder frei geschaltet.

Leider immer wieder Spamversuche.

Spamversuche nehmen wieder zu, vermutlich Corona-bedingt, Filter verschärft.

Hans Albrecht

Ergänzung zu raw- oder jpg-Format

Da meine Themen zu raw- und jpg-Format recht häufig angeschaut werden und es im Netz dazu teils recht widersprüchliche Aussagen bzw. Behauptungen gibt, möchte ich dazu weiter ergänzen.

Da gibt es z. B. die Behauptung, das raw-Format würde gegenüber dem jpg-Format eine größere Dynamik bieten. Das ist falsch, Dynamik bedeutet in Analogie zur Musik, bei der hohe Dynamik großer Abstand zwischen laut und leise bedeutet, in der Fotografie der Abstand zwischen hell und dunkel, d. h. ein Bild, das zwischen sehr hell und sehr dunkel abbildet, hat eine hohe Dynamik.


Die mögliche Dynamik, um bei dem Begriff zu bleiben, ist bei den Formaten raw und jpg etwa gleich.
Der Unterschied zwischen den Formaten besteht in der Auflösung und natürlich darin, daß jpg verlustbehaftet ist, raw üblicherweise nicht.


Das jpg-Format löst mit RGB 8,8,8 bit also insgesamt 24 bit auf, raw-Formate lösen höher auf, z. B. RGB 12,12,12 bit, insgesamt 36 bit bis hin zu 14,14,14, möglicherweise noch höher.


24  bit Auflösung bedeutet 16.7 Millionen Unterscheidungen zwischen schwarz über die Farben und weiß. Das ist schon recht viel.


Aber nun dazu, daß das jpg-Format verlustbehaftet ist.


Das jpg-Format kann bzgl. der Verluste eingestellt werden, von gering bis hoch, in manchen Programmen werden auch Zahlen verwendet,
z. B. 1 für hohe Verluste, 12 für geringe Verluste, was das absolut bedeutet, ist mir nicht bekannt.

Vom Prinzip her arbeitet jpg ähnlich wie aus der Musik bekannte Kompressionsverfahren, z. B. mp3.

Man kann es etwa so verstehen, ein Pixel hat einen bestimmten Wert, das benachbarte Pixel hat einen anderen Wert. Wenn die Abweichung zwischen diesen Pixeln kleiner sind als es die Verlusteinstellung vorsieht, werden die beiden Pixel mit gleichem Wert gespeichert, obwohl sie nicht ganz gleich sind.

Das ist auch der Grund dafür, warum weiße oder schwarze Bilder trotz hoher Qualität zu jpg-Dateien sehr geringer Größe führen.


Es gilt also zu beurteilen, ob die auf diese Weise berechneten Pixel sich ausreichend gering unterscheiden, so daß die damit berechneten Bilder ausreichend aufgelöst dargestellt werden.


Selbstverständlich  löst ein verlustloses raw-Format feiner auf als ein verlustbehaftetes jpg-Format, es geht deshalb darum, ob das jpg-Format ausreichend auflöst.


Meine Kameras Panasonic TZ91, Olympus SH2 und Sony RX100 gestatten die Einstellung, daß raw-Dateien und jpg-Dateien in hoher Qualität in der Kamera erzeugt werden. Darauf nehme ich dann auch Bezug, wenn ich zu Beispielen komme.

Scheinbar hat sich da in den letzten Jahren auch etwas getan, meine Sony RX100, schon etwas älter, erzeugt bei vergleichbaren Motiven jpg-Dateien von etwa 5 MB, die Panasonic TZ91 dagegen schon über 10 MB, obwohl sie weniger Pixel unterstützt.

Die raw-Dateien können auf verschiedene Art und Weise in übliche Dateiformate konvertiert werden, vgl. meine Ausführungen dazu.

Trotzdem möchte ich hier noch einmal ausdrücklich auf das von Panasonic mitgelieferte Programm Silkypix verweisen. Mit diesem Programm können die raw-Dateien der Panasonic TZ91 konvertiert werden, entweder man wählt tif mit 16,16,16 bit Auflösung, wenn man der Meinung ist, es muß das raw-Format voll ausgenutzt werden (führt allerdings zu sehr großen Dateien, hier über 100 MB), oder man wählt jpg. Da hat man Möglichkeiten, die zu sehr gering verlustbehafteten Bildern führen.

Soviel noch einmal zusammengefaßt und ergänzt.

Jetzt geht es um Beispielbilder, an Hand derer versucht wird, den Unterschied zwischen raw und jpg sichtbar zu machen.

Verglichen werden Bilder in raw und jpg in hoher Qualität, so wie sie aus den Kameras kommen. Da ich grundsätzlich mit dng arbeite, werden beide Formate jeweils in das non destructive Dateiformat dng gewandelt.

Die raw-Dateien werden mit dem Adobe-dng-Converter konvertiert.

Die jpg-Dateien werden über Adobe Lightroom in dng konvertiert.

Die Bilder werden in Lightroom nachbearbeitet, meinen Vorstellungen entsprechend angeglichen. Es geht hier aber nicht um den letzten Schliff, nur um das Prinzipielle.

Dann wird verglichen. Beim Vergleichen muß berücksichtigt werden, daß die Darstellung hier im Netz begrenzt ist, d. h. es wird wieder mit Ausschnitten gearbeitet. Diese Ausschnitte sind Teil der zu beurteilenden Bilder, die Darstellung erfolgt weitgehend ohne Verluste (png-Format).

Zunächst Ablichtungen des Testbildes, Ausdruck A4-Format.

Panasonic TZ91, jpg
Panasonic TZ91, raw

……………………..
Da WordPress nur Dateien bis 2 MB  hochladen kann, können die Gesamtbilder hier nicht genau verglichen werden. Zum genauen Vergleich werden Ausschnitte in dem verlustlosen Format (png) gezeigt. Die Vergrößerung der Ausschnitte beträgt etwa 200 % (4k-Bildschirm).

Panasonic TZ91, jpg, Ausschnitt png
Panasonic TZ91, raw, Ausschnitt png


…………………………


Trotz der starken Vergrößerung der Ausschnitte sind die Unterschiede, die ich erkennen kann, gering.
In der Normalansicht und bei entsprechendem Betrachtungsabstand (Abstand etwa Bilddiagonale) erkenne
ich keine Unterschiede.


Jetzt die Ergebnisse mit der Olympus SH2.

OLYMPUS SH2, jpg
OLYMPUS SH2, raw
Olympus SH2, jpg, Ausschnitt png
Olympus SH2, raw, Ausschnitt png


………………………….
Nun noch Ergebnisse mit der Sony RX100

Sony RX100, jpg
Sony RX100, raw

………………………

Sony RX100, jpg, Ausschnitt, png
Sony RX100, raw, Ausschnitt png

……………………


Man muß schon sehr genau hinschauen, um die geringen Unterschiede im Ausschnitt zu erkennen.


Jetzt noch einige Bilder zum Kirchturm der Lutherkirche in Radebeul Ost.

Panasonic TZ91, jpg
Panasonic TZ91,raw

……………………..

Panasonic TZ91, jpg, Ausschnitt, png
Panasonic TZ91, raw, Ausschnitt, png

………………………
Den raw-Ausschnitt hätte ich etwas mehr schärfen sollen.

OLYMPUS SH2, jpg
OLYMPUS SH2, raw

………………………

Olympus SH2, jpg
Olympus SH2, raw

……………………

Sony RX100, jpg
Sony RX100, raw

…………………………..

Sony RX100, jpg, Ausschnitt, png
Sony RX100, raw, Ausschnitt, png

………………………………………………………………………………………………….
Abschließend noch einige Aufnahmen zu einer Blume im Winter.

Panasonic TZ91, jpg
Panasonic TZ91, raw

……………………….

Sony RX100, jpg
Sony RX100. raw

……………………….
Zuletzt noch eine Aufnahme mit der Canon SX700, nur in jpg, die Kamera unterstützt kein raw-Format.

Canon SX700, jpg

……


Für die hier angeführten Motive sind die Unterschiede zwischen jpg- und raw-Format gering, d. h. das jpg-Format in hoher Qualität löst ausreichend auf.
Für Motive mit geringer Dynamik, d. h. mit wenig Unterschied zwischen hellen und dunklen Tonwerten, hat das raw-Format sicher Vorteile.


 

Unschärfe durch Beugung

Wenn die Lichtstrahlen beim Fotografieren vom Objekt durch die Optik auf den Chip gelangen, werden sie an der Kante der Blende beeinflußt.
Während der größte Teil der Lichtstrahlen abseits der Kanten geradlinig ohne Ablenkung auf den Chip gelangt und bei richtiger Fokussierung für das scharfe Bild sorgt, wird ein kleiner Teil des Lichtes an der Kante etwas abgelenkt. Dieser Teil des Lichtes, der für die Abbildung es Objektes auf dem Chip unerwünscht ist, sorgt für eine gewisse Unschärfe, genannt Beugungsunschärfe.


Da die Beugung an Kanten erfolgt, ist die Beugung um so stärker, je mehr Kante eine Fläche hat.
Bei der kreisförmigen Blende ist die Kante bezogen auf die Fläche dem Durchmesser der Blende umgekehrt proportional, d. h. je kleiner der Durchmesser der Blende desto größer die Beugung.

Und es gibt keine Abhängigkeit von der Brennweite.


Hier möchte ich ein Bild einfügen, daß keinen oder besser gesagt nur einen sehr geringen Bezug zum Thema hat, denn Beugung ist überall und immer.

Radebeuler Bismarckturm oberhalb der Lößnitz-Weinberge

Beugung des Lichtes ist ein seit vielen Jahren bekannter und in der Fachliteratur ausführlich beschriebener physikalischer Effekt.

Bei der Beugung an den fotografischen ringförmigen Blenden bilden sich unerwünschte Ringe um die Lichtstrahlen, so daß der Lichtstrahl trotz einwandfreier Fokussierung auf dem Chip nicht punktförmig abbildet. Diese störenden Ringe werden Beugungsscheiben genannt.

Es wird von Beugungsscheiben gesprochen in einer gewissen Analogie zu den durch unzureichende Fokussierung statt der Punkte entstehenden Zerstreuungskreise, obwohl Art und Entstehung der Beugungsscheiben und der Zerstreuungskreise völlig unterschiedlich sind.

In der Literatur wird folgende zugeschnittene Größengleichung als Näherung für die Berechnung des Durchmessers d der Beugungsscheiben angegeben:


d [ mikrometer ] = 1.35 * Bl     mit Bl für die Blende
………..gilt für sichtbares Licht mittlerer Wellenlänge


Für die Stärke des Einflusses der Beugungsscheiben auf die
Bildschärfe ist das Verhältnis der Größe der Beugungsscheiben zur Pixelgröße maßgebend. Je größer die Beugungsscheiben bezogen auf die Pixel sind, desto mehr Unschärfe entsteht durch Beugung.

Je größer die Pixel, desto geringer der Einfluß durch Beugung.

Bei der Beugung sind Kleinbildkameras gegenüber Kompaktkameras im Vorteil, weil die Pixel bei Kleinbildkameras größer sind.


Nun noch etwas zum quantitativen Einfluß der Beugung.

Für die Größe der Pixel wird der Begriff Pixelpitch pp verwendet, entspricht etwa der Größe der Pixel.

Zur Veranschaulichung wird wieder mit verschiedenen Kameras verglichen.

……………………..Kleinbildkamera      Sony RX100    Superzooomkamera
……………………..Nikon D750


Pixelpitch pp                       6 μm                               2.4μm                    1.4 μm

Durchmesser d der      29.7/2.7 μm          14.9/2.4 μm        8.6/10.8/4.4  μm
Beugungsscheibe
bei Blende                          22/2                                 11/1.8                      6.4/8/3.3

d / pp                                     4.9/0.45                        6.2/1                        6.1/7.7/3


Das Verhältnis Beugungsscheibendurchmesser zu Pixelpitch zeigt deutlich die Unterschiede auf, sagt aber noch nichts aus zu den tatsächlichen Werten hinsichtlich Unschärfe.

In der Literatur weichen die Angaben dazu untereinander stark ab, je nach dem wie die Schärfe/Unschärfe definiert wird.
Zur Beurteilung der Bildschärfe verwende ich wieder die oben angegebene Analogie zur Unschärfe durch Streuung, d. h. es wird angenommen, daß bei einem Verhältnis (vgl. auch meine Beiträge zu Schärfentiefe)


Chipabmessungen zu Beugungsscheibendurchmesser  ≥ 1500


ausreichend Bildschärfe herrscht.

Das ergibt für die Kameras

…………………….Kleinbildkamera       Sony RX100     Superzooomkamera
…………………….Nikon D750


Chipdiagonale D              43 mm                            15.9 mm               7.7 mm

Durchmesser d         29.7/2.7 in μm     14.9/2.4 in μm    8.6/10.8/4.4 in μm
der Beugungsscheibe
bei Blende                         22/2                                  11/1.8                      6.4/8/3.3

D / d                                  1448/15926               1067/6625          895/713/1750


Wenn man das Ergebnis D/d betrachtet, erkennt man, daß bei der Kleinbildkamera Beugung praktisch kein Problem darstellt, selbst wenn extrem abgeblendet wird.
Bei den Superzoomkameras dagegen fängt der störende Einfluß der Beugung schon fast bei Weitwinkel und Offenblende an.

Meine praktische Erfahrung ist allerdings, daß der Einfluß der Beugung auf die wahrnehmbare Bildschärfe anders als der Einfluß der Streuung ist, was ja auch physikalisch bedingt ist. Der Einfluß erscheint geringer.


Bei der Streuung spielt eine Rolle, ob es sich um Unschärfe in der Tiefe oder allgemein handelt. Normalerweise wird es sich um Unschärfe in der Tiefe handeln, also zu wenig Schärfentiefe. Dagegen kann man von vorn herein etwas tun, in dem man mehr abblendet.

Bei der Beugungsunschärfe erscheint alles unscharf, also insbesondere auch in der Tiefe. Dagegen kann man auch etwas tun, in dem man weniger abblendet, wenn das möglich ist.


Aus diesen gegenläufigen Abhängigkeiten der Bildschärfe von der Blende leitet sich ab, daß es eine optimale Blende gibt, bei der sich Bildunschärfe durch Streuung und Bildunschärfe durch Beugung die Waage halten.


Diese Blende wird förderliche Blende genannt.


Da sowohl die Bildunschärfe durch Streuung als auch die Bildunschärfe durch Beugung Definitionssache sind, ist an sich auch die förderliche Blende Definitionssache.


Jetzt noch der Versuch, die Abhängigkeiten etwas bildlich darzustellen.

Dafür verwende ich normalerweise Ausdrucke eines Testbildes bspw. auf A4-Format, die ich im Garten mit entsprechendem Abstand fotografiere und auswerte.

Im Winter behelfe ich mir auch mit dem 4k-Monitor im Hobbyraum, unterliege dabei allerdings Einschränkungen bzgl. Abstand, d. h. Tele ist problematisch.

Testbild

…..
Ich danke Herrn Altmann, der mir die Verwendung seines Testbildes auf dieser Webseite gestattet.

Bei der Verwendung eines Monitors muß man beachten, daß die darzustellenden Details groß bezogen auf die Monitorauflösung sein sollten, damit es nicht zu Störungen durch die Pixel des Monitors kommt.

Außerdem sollte man bei Skalierungen darauf achten, daß mit 100% oder ganzzahligem Verhältnis dazu skaliert wird, also entweder 100%, 200% oder 50% usw., weil es sonst zu Fehlanzeigen kommen kann.

Die Beurteilung der Ergebnisse im Detail muß an Hand von Ausschnitten erfolgen, weil die Darstellung hier im Netz begrenzt ist.

Die hier aufgeführten Beispiele beziehen sich auf Aufnahmen eines A4-Ausdruckes des Testbildes.

Bei der Beurteilung der Ergebnisse ist zu berücksichtigen, daß Beugung und  Fokussierung überlagert Einfluß auf die Bildschärfe nehmen.


Die Auswertung erfolgt so, daß Bild- und Testbildgröße ins Verhältnis gesetzt werden. Außerdem wird ein Linienbereich im Testbild mit der Höhe des Testbildes ins Verhältnis gesetzt. Über die ermittelten Verhältnisse wird eine Liniendichte für das Linienbereich berechnet. Diese Werte werden jeweils dem Testbild und dem Ausschnitt mit dem Linienbereich zugeordnet.
Angezeigt werden Ausschnitte zum Testbild und zum genannten Linienbereich. Die Linienbereiche werden verglichen.
Die Angabe zu den Linienpaaren bezieht sich auf die Bildhöhe.


Es wurden so die drei Superzoomkameras beurteilt, und es sei noch einmal ausdrücklich betont, es geht hier nur um den Einfluß der Beugung.

Da die Superzoomkameras diesbezüglich etwa gleich sind, wird hier beispielhaft hauptsächlich das Ergebnis der Canon gezeigt.

“Versuchsstand”

……….

Canon SX700,     Blende 3.2, 1084 Lp
Canon SX700,    Blende 3.2, 1249 Lp
Canon SX700,         Blende 3.2, 1420 Lp

 

………………………..

Canon SX700,   Blende 3.2, 1084 Lp
Canon SX700,     Blende 3.2, 1249 Lp
Canon SX700,    Blende 3.2, 1420 Lp

…………………………………………..
Hier noch Ausschnitte der Panasonic TZ91 zum Vergleich, die Ergebnisse sind etwas anders, was ich in meinem Beitrag “womit nehme ich meine Bilder auf” schon beschrieben habe.

Panasonic TZ91, Blende 3.3, 1124 Lp
Panasonic TZ91, Blende 3.3, 1308 Lp
Panasonic TZ91, Blende 3.3, 1478 Lp

 

……………………………………………………………………………………………………………

Panasonic TZ91, Blende 3.3, 1124 Lp
Panasonic TZ91, Blende 3.3, 1308 Lp
Panasonic TZ91, Blende 3.3, 1478 Lp

…………………………………..

Canon SX700,     Blende 6.3, 756 Lp
Canon SX700,     Blende 6.3, 920 Lp
Canon SX 700,    Blende 6.3, 1249 Lp

……………………………

Canon SX700,     Blende 6.3, 756 Lp
Canon SX700,     Blende 6.3, 920 Lp
Canon SX700,    Blende 6.3, 1249 Lp

…………………………….
Bei Blende 6.3, 1249 Lp ist nur noch grau zu erkennen, die Linien verschwimmen infolge der Beugung vollkommen.
Bei Blende 3.2, 1249 Lp sind noch deutliche Reste der Linien zu erkennen, selbst bei Blende 3.2, 1420 Lp sind noch Andeutungen der Linien zu erkennen.

Ich denke, daß damit der Einfluß der Beugung in Anhängigkeit von der Blende doch mit recht einfachen Mitteln veranschaulicht werden kann.


Um Unschärfe durch Beugung so gering wie möglich zu halten, sollte so wenig wie möglich abgeblendet werden.
Das gilt um so mehr, je kleiner der Chip der Kamera ist.


 

Test Capture One Pro Version 12

Da das Bildbearbeitungsprogramm Capture One, im Folgenden C1, neuerdings recht stark beworben wird und als mögliche Alternative für die Abonnementversionen von Adobe mit ihren Problemen insbesondere für Hobbyfotografen interessant ist, habe ich die Testversion Capture One Pro Version 12 installiert und habe diese erprobt.

Ich arbeite mich im Allgemeinen intuitiv in neue Programme ein, das fällt mir bei diesem Programm schwer.


Total belastend finde ich, daß ich regelrecht belästigt werde mit Katalogordnern und Sitzungsordnern, selbst wenn ich programmeigene Ordnungssysteme gar nicht nutzen möchte.
Besonders störend finde ich, daß dieses aufdringliche Verhalten auch noch Spuren hinterläßt, die ich mühselig wieder beseitigen muß. Es werden Ordner angelegt, wo Capture One an sich nichts zu suchen hat.


Bei Capture One ist das Öffnen eines Bildes sehr umständlich, für mich nicht intuitiv. Ich habe zunächst eine neue Sitzung eröffnen müssen und dann in den Ordner navigieren müssen, in dem das zu öffnende Bild ist, dann erscheint das Bild auch nach einiger Zeit und es sind wieder 2 Ordner in dem Verzeichnis von C1 generiert worden, die ich wieder löschen muß, weil ich sie nicht benötige.
Sicher kann man sich an Vieles gewöhnen, aber der erste Eindruck ist diesbezüglich nicht gut.


Wenn ich das Programm Capture One nur als Bildbearbeitungsprogramm einschließlich Raw-Converter nutzen will, ist es für mich umständlich zu handhaben und total überladen.


Da ich seit 2014 als Dateisystem Adobe dng nutze, begrüße ich, daß Capture One dieses Format auch unterstützt (ich habe dazu schon kurz berichtet).
Ich habe mich deshalb damit etwas näher beschäftigt.

Ausgangspunkt ist ein älteres .arw-Raw-File aus der Sony RX100.

Zunächst das Ausgangsbild

Ausgangsbild arw-Raw-Datei der Sony RX100

Das Bild wurde mit Capture One und mit Lightroom in dng konvertiert, wobei jeweils die Schärfung auf null gesetzt und die Helligkeit, die geringfügig unterschiedlich war, angeglichen wurde.

Das Bild mit Lightroom in dng konvertiert
das Bild mit Capture One in dng konvertiert

………………………………………………
Abgesehen von geringen Tonwertunterschieden, die ausgleichbar sind, sind keine Unterschiede zu erkennen.

Wenn ich das Bild aus C1 in jpg oder tif exportiere, sind die Tonwerte stark unterschiedlich zum in C1 angezeigten Raw-Bild und in anderen Programmen.
Das Ausgangsbild in C1 vor der Konvertierung sieht richtig aus.
Möglicherweise mache ich etwas falsch, aber wenn man mit einer Testversion wirbt, sollte so etwas nicht passieren können.

Ausgangsbild mit Capture One in dng konvertiert
Ausgangsbild mit Capture One in jpg oder tif konvertiert

………………………………………….
Jetzt wurde das mit Lightroom generierte dng-Bild nach C1 importiert, mittelmäßig geschärft, weiter keine Bearbeitung und dann als dng-Bild exportiert. Die Tonwerte sind verändert, rot ist viel zu stark.

Bild als LR-dng in C1 mittelmäßig geschärft, dann als dng exportiert
Ausgangsbild als LR-dng

 

…………………………………………
Noch erwähnenswert ist, daß die Dateigröße  der dng-Datei in Capture One bedeutend größer ist als die dng-Datei in Lightroom,
im Beispiel etwa 40 zu 24 MB.
Außerdem wird nur ein winziges jpg-Vorschaubild eingebettet, bei Lightroom kann das wahlweise auch in voller Größe eingebettet werden. Vorschaubilder in voller Größe haben den Vorteil, daß die Anzeige bei entsprechender Einstellung des Bildbetrachterprogrammes rasant schnell geht, weil das Bild fertig ist, nur aufgerufen werden muß, also nicht erst wie das dng jedesmal entwickelt werden muß.

Für mich ist ein weiterer Nachteil von Capture One, daß in sein dng scheinbar nur raw-Files eingebettet werden können.

Dann habe ich versuchsweise das C1-dng  in Photoshop Elements geöffnet, geht über den Raw-Konverter, dort Bild öffnen, geöffnetes Bild in Ordnung.
Jetzt Bild geschlossen, ohne abzuspeichern, das dng wird so verändert, daß nur noch eine winzige Vorschau zu sehen ist, und es ist zu sehen, daß sich die Größe der dng-Datei etwas verändert hat, obwohl ich wie gesagt keinerlei Speicherung durchgeführt habe.


Normalerweise erwarte ich, daß ein Format dng unabhängig vom Hersteller gleich ist. Wenn ich jpg oder tif hernehme, dann gehe ich davon aus, daß die Formate unabhängig vom Hersteller gleich sind und das sind sie auch.
Beim dng-Format von Capture One und Adobe ist das nicht so.


Wenn ich die Dateien editiere und nach bestimmten Begriffen suche, z. B. die Werte der Steller, so stelle ich fest, daß es da grundlegende Unterschiede gibt.
Im Beispiel habe ich das arw-Ausgangsbild in Capture One maximal, also mit 1000, geschärft, das Ergebnis in C1 ist extrem/übertrieben scharf.
Als dng exportiert und in Lightroom geöffnet, ist das Bild nicht geschärft, und die Steller unter Details (Überschrift ist bei C1 und Lr gleich) insbesondere Stärke fürs Schärfen stehen bei null bzw. kleinen Werten. Der Wert von C1, 1000 erscheint in Lr nicht.
Weitere Suche in C1, da gibt es Exportrezept, da kann man etwas anpassen, insbesondere zur Schärfe. Ergebnis Tonwerte nach grün verschoben…

Noch zur Schärfung, die Optionen bei Capture One finde ich gut, so lange man in Capture One bleibt, sind die Ergebnisse bzgl. Schärfen und Rauschen auch gut, wobei die Schärfung bei maximalem Wert übertrieben ist.
Bei Adobe kann man zu ähnlichen Ergebnissen kommen, die Einstellungen sind anders, vielleicht etwas umständlicher, da ich aber ohnehin mit Vorgaben arbeite, spielt das keine Rolle.
Außerdem kann bei Adobe mit den Schärfentools der Nik-Collection gearbeitet werden, mit denen auch sehr gute Ergebnisse erzielt werden können.


Aus meiner Sicht bietet Capture One mit seinem dng-Format erfreulicherweise auch ein non destructives Bilddateiformat an.


Das habe ich allerdings nicht weiter getestet.


Bezüglich erreichbarer Bildqualität habe ich in meinem hierzu schon erschienenen Beitrag versucht nachzuweisen, daß keine signifikanten Unterschiede erreichbar sind.


Zwischen den Raw-Konvertern von Adobe und von Phaseone sind bzgl. erreichbarer Qualität keine Unterschiede festzustellen.


Die dng-Formate von Adobe Lightroom und Capture One sind nicht kompatibel, d. h. das, was Adobe anstrebt, eine Vereinheitlichung der Raw-Formate, wird von Capture One nicht unterstützt, Capture One geht eigene Wege.


Also entweder Adobe Lightroom oder Phaseone Capture One verwenden, gemischt zu verwenden kann ich nicht empfehlen.


 

Schärfentiefe Ergänzung

In meinem Beitrag Schärfentiefe habe ich die Zusammenhänge aufgeschrieben und interpretiert, Bildvergleiche kamen etwas zu kurz, möchte ich hiermit ergänzen.

In den Bereichen, wo die Fernpunkte noch endlich sind, gibt es eine Abhängigkeit von der Kameraart, zu der ich so noch keinen Bericht gefunden habe. Da ich das aber für bemerkenswert halte, möchte ich dazu berichten.


Wenn man mit einer Kleinbildkamera mit gleicher Schärfentiefe aufnehmen möchte wie mit einer Kompaktkamera, muß man sehr stark abblenden, so daß der Vorteil der Lichtstärke der Optik der Kleinbildkamera gegenüber der Kompaktkamera verloren geht.


Dazu zwei Oberflächen des im Beitrag Schärfentiefe angeführten Programmes zur Berechnung der Schärfentiefe.

Beispiel für Schärfentiefe Kompaktkamera, Cropfaktor etwa 5.7

Beispiel für Schärfentiefe Kleinbildkamera, Cropfaktor 1

…………..
Damit man die beispielhaften Werte für die Nah- und Fernpunkte bzw. die Schärfentiefe der Kompaktkamera mit der Kleinbildkamera erreicht, muß man bei der Kleinbildkamera sehr stark abblenden. Hier im Beispiel

statt Blende 4 bei der Kompaktkamera

………..Blende 22 bei der Kleinbildkamera.

Wenn man die Öffnungsdurchmesser d = f / Bl vergleicht,

…………Kompaktkamera    d = 9 / 4 = 2.25 mm

…………Kleinbildkamera     d = 50 / 22  = 2.27 mm

die Blendenöffnung ist gleich, d. h. für diese Situationen kommt der Lichtstärkevorteil der Optik der Kleinbildkamera nicht zum Tragen.

Die eingangs formulierte Behauptung präzisiert:


Wenn man mit einer Kleinbildkamera in den Bereichen, wo die
Fernpunkte endlich sind, mit gleicher Schärfentiefe aufnehmen
möchte wie mit einer Kompaktkamera, muß man sehr stark
abblenden, so daß der Vorteil der Lichtstärke der
Kleinbildkamera gegenüber der Kompaktkamera verloren geht.


Dazu einige Beispiele, schräg liegenden Maßstab fotografiert:

Kleinbildkamera
Da ich selbst keine digitale Kleinbildkamera besitze, hat mir ein guter Bekannter ausgeholfen und hat mir mit einer Sony α 7III und Objektiv
Voigtländer 40/1.2 Beispielbilder aufgenommen.
Nur am Rande, es war gar nicht so einfach, Jemanden zu finden, der mir mit Vergleichsmaterial von einer Kleinbildkamera geholfen hat. Deshalb noch einmal der Dank nach München.

Sony Alpha 7 III und Voigtländer 40/1.2, Blende 1.2 Schärfentiefe berechnet 2.3 mm

……………………………………………….

Hier sieht man, wie stark bei diesem Objektiv und dieser Kamera bei Offenblende der Schärfentiefebereich eingeengt wird.

Für die weiteren Vergleiche wird oben das Bild mit der jeweiligen Kompaktkamera, bzgl. Brennweite angepaßt, und unten das Bild mit der Kleinbildkamera bzgl. Blende angepaßt, angeordnet.

Sony RX100, Brennweite äquivalent Kleinbild 40 mm, Blende 3.2

Sony RX100, Brennweite 14.6 mm, äquivalent Kleinbild 40 mm, Blende 3.2, Schärfentiefe berechnet 18.7 mm

Sony Alpha 7 iii, Objektiv Voigtländer 40/1.2, Blende 3.2, Schärfentiefe berechnet 6.2 mm

Es ist sehr deutlich zu erkennen, daß bei vergleichbaren Werten die Schärfentiefe bei der Kompaktkamera höher ist als bei der Kleinbildkamera.

Jetzt noch der Vergleich mit der Superzoomkamera Panasonic TZ91.

Panasonic TZ91, Brennweite 7.2 mm, äquivalent Kleinbild 40 mm, Blende 3.8, Schärfentiefe berechnet 45.4 mm

Sony Alpha 7 iii, Objektiv Voigtländer 40/1.2, Blende 4.0, Schärfentiefe berechnet 7.8 mm

Ich habe für die Beispiele die Schärfentiefe berechnet und in der Bildunterschrift eingefügt. Als Schärfedefinition wurde N = 3000 verwendet.

Ich denke, diese bildlichen Erläuterungen und die Tendenz der Berechnung belegen die eingangs gemachte Feststellung.


Wenn man mit einer Kleinbildkamera in den Bereichen, wo die
Fernpunkte endlich sind, mit gleicher Schärfentiefe aufnehmen
möchte wie mit einer Kompaktkamera, muß man sehr stark
abblenden, so daß der Vorteil der Lichtstärke der
Kleinbildkamera gegenüber der Kompaktkamera verloren geht.


Obwohl es mit Vergleichen immer so eine Sache ist, möchte ich trotzdem Kompaktkameras und Kleinbildkameras mit Modelleisenbahn und Eisenbahn vergleichen, was bei der Eisenbahn der Maßstabsfaktor für die Modelle ist bspw. 1 : 87, ist bei den Kameras der Cropfaktor bspw. 1 : 5.7, d. h. die Kompaktkamera ist gewissermaßen ein Modell der Kleinbildkamera.
Die Schärfentiefe ist im entsprechenden Geltungsbereich proportional dem Cropfaktor.

Um das Thema weiter abzurunden, möchte ich noch kurz auf die hyperfokale Entfernung eingehen. Die hyperfokale Entfernung dh beschreibt, bei welcher Entfernung der Fokussierung die Fernpunkte unendlich werden.
Da die hyperfokale Entfernung umgekehrt proportional dem Cropfaktor ist, ergibt sich bzgl. der beispielhaft aufgeführten Kameras folgendes Bild:

Panasonic TZ91, f = 7.2 mm, Blende 3.8 ⇒ dh = 5.3 m
Sony RX 100, f = 14.6 mm, Blende 3.2     ⇒ dh = 12.6 m
Sony α7III, f = 40 mm, Blende 1.2               ⇒ dh = 93 m

d.h. wenn ich mit der Sony α7III auf 93 m fokussiere, liegt die Schärfentiefe bei 46.5 m bis unendlich, wenn ich bei der Sony RX100 auf 12.6 m fokussiere, liegt die Schärfentiefe bei 6.3 m bis unendlich und wenn ich bei der Panasonic TZ91 auf 5.3 m fokussiere, liegt die Schärfentiefe von 2.65 m bis unendlich.

Um die beispielhaften Werte für die TZ91 zu erreichen, müßte ich bei
der Sony RX100 auf Blende 8 abblenden, bei der Sony α7III auf knapp Blende 22 und der Lichtstärkevorteil wäre verloren.

Hier noch diese Gegenüberstellung:

Panasonic TZ91, Brennweite 7.2 mm, äquivalent Kleinbild 40 mm, Blende 3.8, Schärfentiefe berechnet 45.4 mm

Sony RX100, Brennweite 14.6 mm, äquivalent Kleinbild 40 mm, Blende 8, Schärfentiefe berechnet 47.1 mm

Sony Alpha 7 iii, Objektiv Voigtländer 40/1.2, Blende 22, Schärfentiefe berechnet 43.3 mm

……….


Für den Anwender bedeutet das, wenn er viel im Nahbereich fotografieren möchte, sollte er sich überlegen, ob er mit Kompaktkameras aufnimmt, denn Kompaktkameras erleichtern in diesem Bereich das Fotografieren wesentlich.